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The kinetic equations describing the operation of a CO laser, which is one of the most 
promising in terms of efficiency and specific characteristics, consist of a nonlinear system 
of high order (30-60). The numerical studies which have been made of the parametric func- 
tions of the generation power are inadequate for the analysis of experimental data and the 
design of new systems. In the present report we propose a simple model of a CO laser which 
makes it possible to find the power and the generation spectrum as functions of the param- 
eters of the instrument. 

An approximate analytical theory of the distribution of diatomic molecules by vibration- 
al levels under the conditions of strong separation of the effective vibrational temperature 
T~ from the gas temperature T was constructed in [i, 2]. The condition of applicability of 
the resonance approximation used in [i, 2] has the form 

T@v' 

where C = (v* + l)f(0) exp [--(AE/T)(v*) 2 -- 1/2] [~(0) is the fraction of molecules in the 
ground state]; AE is the anharmonicity of a molecule; v* is a number corresponding to the 
Treanor minimum [3]; ~vv is a number which depends on the gas temperature and characterizes 
the rate of exchange with the resonance defect [2]. 

Allowance for radiative transitions within the framework of [i, 2] gives the equation 

3Q,o d [ /2(2AE d21n.,r a~-~, d~, (t, -i- 1) ~" r d~,~. , Plo (v + 1) / exp (G-rv) -~- 

6, 1: d , d/] - - - l , o ( t ' - i - l ) / - i - ~ ( t ' )  - . -~ ,  =0,  (1) 

where P:o and A:o are the probabilities of the collisional and radiative transitions (i + 0); 
Q~o is the probability of exchange in a collision of CO molecules; I v is the light intensity 
in the transition v + 1 § v; h~ v = E: -- 2AEv; Yv = i -- exp [--2Bv(Jv + I)/T]; B v is the rota- 
tional constant; Jv is the rotational quantum number at which generation in the band v + 1 
v takes place; o(v) is the cross section for stimulated emission. The remaining notation is 
as in [2]. 

The independence of T: from the presence of generation follows from Eq. (!). This con- 
clusion is confirmed by the numerical calculations of [4]. The loss rate is determined by 
the quantum flux formed in the region of the Treanor minimum by V--V processes and depends 
only on T: and the gas temperature. The connection between T: and T, if the pumping is con- 
centrated in the lower levels, is found from the equation 

q :-:l;,, jE _ 6 Q ~ o a E C 2 ( T t ) ,  
fVcoE 1 63v T 

where q << (6Q:o/6~)(AE/T) 3. Here jE is the power released in the discharge; nv is the por- 
tion expended on the excitation of vibrations; NCO is the density of CO molecules. 
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With steady generation the inversion is determined by the condition 

o(v)(v,,f q- d//dv) := Ao, ( 2 )  

where Ao = in (I/R)/2LNc0; R = ~ ;  Rx a are the coefficients of reflection of the mirrors; 
L is the length of the active medium; in'(2) the resonator is assumed to be nonselective. 

Solving (2 )  for l~<v ~.r, we find 

(! t !i fo (v )  = / ( / ) e x p  - -  7, ,dr _L hoex  p __ 7~.dv 

f,:, , ] 

~(t , ' )  ' (3) 

where I and r are the lower and upper limits of the generation spectrum. Near the lower lim- 
it we use the approximate solution (I v = 0) [i, 2], and joining it with (3) at v = 1 we find 
f(1) = C/(l + I) if ~ > v* (otherwise it must be joined with the corrected Treanor distribu- 
tion). 

Substituting the solution (3) into Eq. (i), we find the power of the radiative losses 

where 

|2AE 
Ao/~ "-' hc~ ~ Q~o (v -!- t ) / o  (v) [(y~ (v -~- 1) - t) fo (v) - (t, -~ 1) Ao,,'~ (,:) - -  L exp (SVTV) - -  U], (4) 

Z -: t '~o l '6r  o ~ t :  p = A~oT6~v,, '12AEQ~ o << t. 

In deriving (4) we omitted the contribution from terms of %d~in(fo/dv2), which are small ac- 
cording to estimates. The edge of the generation spectrum is found from the conditions 

Ht)  := l (r )  = O. 

The total emission power is determined by the equation 

i' --: t [~dv -- [[~, (l -~ 1) "~ - - / L  (r -l- l }  2 - -  
[ ho rgsv 

2 i t)~ exp (6vrv) -~- ,u) (v -i- 1)/odu]. 

T 

I 

The equations derived are considerably simplified with the additional assumptions Y v  ~ 

7 and ~(v) = ( v  + i)0o. 

In this case the total emission power is determined by the equation (k = Ao/yoo): 

i ,  6hEl~v01o [ C2 2Xk - 
=: ~ [ k ~ - -  i~vreXp (~vrr)] .  

In the absence of V--T losses the lower edge of the spectrum, 
a r e  

l = t / ? ( 1 -  k / C ) -  | : 

p 6AEh~vOl~ . 
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the power, and the efficiency 

L~' (t -;- I )  " 

(5) 
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The latter equation connects the generation efficiency with the lower end of the spectrum. 

To find the upper end r of the spectrum one must allow for the effect of anharmonism 
on the quantity o(v). The expressions obtained allow one to calculate the emission spectrum~ 
the power, and the efficiency as functions of the pumping rate, the gas temperature, the gas 
composition, and the quality of the resonator. For a comparison of the theory constructed 
here with experiment we use the report [5], neglecting the effect of the flux across the res- 
onator. The dependence of the total emission power on the pumping power is well described 
by Eq. (5). The "threshold" pumping rate is estimated by the equation 

Pthr ~= 6AEA"coh~Q,ok~ T6~'v, 

and for the experimental conditions of [5] Pthr = 60 kW, p = 0.76 mm Hg, T = 100~ CO:Ar = 
1:9, (--In R)/L = 0.12, V = 500 cm 3, and for Q:o we take the values which follow from [6]. 
The experimental value is Pthr = 70 kW. The slope of the dependence of Pout on the pumping 
rate P is determined by the quantity ~qunvSdis/S, where ~qu = h~v/E~ = 90%, ~v is the excita- 
tion efficiency of~ 80%, and Sdis/S is the ratio of the area of the output window to the 
area of the discharge, =0.29, i.e., the slope is~0.2. In the experiments this value is 
=0.17. Using (6) the theoretical efficiency at a pumping rate of 152 kW gives ~ ~0.12, 
while in the experiment the efficiency is ~ 0.08. The quantity ~theor ~5~5 while lex p = 4. 
Allowing for the approximations used in constructing the theory, the agreement achieved must 
be considered satisfactory. 
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